Too little rain is a serious problem; consequently, the morphology and behavior of animals inhabiting arid regions is often defined by coping mechanism for low precipitation. But does enough rain eventually become too much rain? Read our conceptual synthesis and review on Hygric Niches for Tropical Endotherms or check out this introductory explainer video. Next steps in this system involve experimental tests of rain storms on physiology and behavior!

Mounting evidence from the tropics suggests that at the wet end of the spectrum, higher-than-average rainfall may decrease fitness. Using seven years of capture data from a community of birds in the mountains of Costa Rica, we showed that a wetter-than-average year can be negatively associated with apparent survival, but the responses are species-specific… not all birds respond to rainfall variation in the same ways, even in the same communities. We are testing multiple predictions of this hypothesis in our tropical system working in multiple populations of Corapipo altera across precipitation gradients on both the Caribbean and Pacific slope. Elsie Shogren conducted population-intensive studies of social stability and individual condition at Volcán Tenorio National park (in some of the driest Caribbean-slope forests inhabited by White-ruffed Manakins) while past work has also taken place at El Copal, a private reserve in the Reventazón valley and Rara Avis where Alice did her PhD work. We have collected data from five additional populations elsewhere in Costa Rica, adding tests of genomic predictions to this study.

PhD student, Kristen Hobbs is taking up where Elsie left off, expanding both behavioral, physiological, and genetic aspects of this work. We have recently branched out into working with the well-studied manakin genus Manacus because aspects of its behavior make it more conducive to some of the experimental and behavioral predictions we are testing.

Our work with manakins has given rise to several collaborations with other members of the Manakin Genomics Research Collaboration Network.

ExpandClose